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Abstract

A unified approach is presented for modelling capacitive irises and steps in

guides.

The variational solution yields an accurate wideband equivalent network with

dependent element values. Design information is provided.

1. Introduction

Approximate monomode representations of

discontinuities are familiar to the microwave

engineer. No models at all, however, are available
for configurations where more than one mode is

propagating or still causes appreciable interaction.

Recently a new approach to the modelling of trans–

verse aperture-type discontinuities in a general

multimode situation has been developed.l This

approach is based upon the following physical
observations:
i. Only the first few modes excited by a discon-

tinuity “see” the successive discontinuity,
that is, all the propagating modes plus
possibly the first few nonpropagating ones.
These we shall call accessible modes.

ii. All the infinite remaining modes can be
considered as localized to the neighborhood

of the discontinuity which excites them.

Accessible modes represent the truly distributed

part of the problem. Localized modes, instead,

being almost “lumped” in nature, are responsible

for the energy storage of the discontinuity. The

total effect of the localized modes on the
accessible ones can be represented by lossless,

reciprocal, quasilumped rnultiports (one pair of
accessible ports for each accessible mode). These

multiports can be represented by a Foster canonical
representation. The problem consists in extracting

poles and residues directly from a Rayleigh–Ritz
variational solution of the field problem.

The field problem of a cascade of

discontinuities then reduces to the network problem

of analyzing a cascade of lumped multiports

connected by a finite (and usually small) number of

transmission lines (see Fig. 1). The multiports

are described by means of their canonical Foster
form. The propagation constants of the trans-

mission lines, one for each accessible mode, are

known. Therefore, one can apply standard network

analysis to obtain the overall characteristics of

the cascade.

Inductive iris and step discontinuities under

arbitrary TE (LSM) excitation have been treated in

a recent paper. 2

The same technique is also applicable to the

treatment of obetacle problems under TM(LSE)

excit at ion.

The present contribution treats the case of

TM(LSE) excitation of aperture–type discontinuities

standard and oversize

explicit, geometry-

or TE(LSM) excitation of obstacle-tvDe
discontinuities.

. .
The capacitive iris and step

diacontinuities are treated in detail.

2. ,Variational Solution

The basic geometry is illustrated in Fig. 2.
If b’ = d, the step is recovered; if b’ = b and

t = O, the infinitely thin iris is obtained. The
k modes are accessible in guide g, k’ modes in
guide g’ (k + k’ = ka). Let us introduce thf:

transformation2
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10 + ’11
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‘lo
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with the above transformation

Cos y = ; Pnp Cos pe ;
P=()

.

Cos ,% y =
b

~ Amp COS pe ;
P=()

(1)

(2)

and the normalized susceptive part of the Green’s
function, i.e. , the contribution of the localized——
modes only, reduces to the matrix

B
Pq = Jk & ‘nppnqEpOEqO + ~ ~ ‘mpAmq’pCl’qOm>k ?Ym

(3)

‘po = cop
=2ifp=0, =lifp>0 .

The propagation constants are:
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(4)
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We define also: (% : P+cl

2a;=—;

~=%j=/-; ,=&
‘n , n na -

The Rayleigh-Ritz variational expression of order

N for the reactance matrix of the iris, as seen by
the accessible modes, is

T
Q .B

-1x.x. “ QT (5)

where Q denotes the matrix formed with the first k
rows of P and k’ rows of A and the infinite matrix
B has been replaced by its N x N truncation. Since

Qk+l,* = P ~Q1,* , we need consider only

ka - 1 = k ports.

3. Frequency Dependence

Localized modes are “quasilumped” in nature.
Therefore an effective positive real (p.r.)

aPProx~mstion of the modal characteristic
admittance is obtained by means of a continued
fraction expansion of the square root in (4).

Successive truncations yield:

(6)

Let us use in (3) the third-order approximation for
n < nd (nd arbitrary) and the first-order

(q~asistatic) approximation for n > nd. A similar

aPProximation is valid “a fortiorir’ in guide2.

Setting ~ = N, (5) yields

-1

(

-1
x ‘Q” B-l-QT =UT” B”UEY . (7)

Introducing (6) in the above equation, we obtain a

canonical Foster representation of the iris

susceptance y as seen by ~ = N accessible modes

~r(n) md
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where md is the equivalent of nd in guide 2 and
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If ~ < N the unwanted N - ~ ports are left open.

It appears from (3) that the case ~ > N is not
interesting.

In the case of a thick iris in a uniform

guide, it is possible to make use of longitudinal

symmetry. Canonical representations have been

derived in this case too.

4. Examples

Figure 3 depicts geometry, equivalent circuit
and element values versus b/d of the E–plane step

obtained by eetting N = nd = md = ~ = 1 in (8).
The reflection coefficient ig accurate within
2 percent over the band 1 ~ u < 2 over the whole

step range.

Figure 4 shows the equivalent network of an

infinitely thin iris with two accessible modee.
This was obtained by setting ~ = k = nd = 2 and is

applicable to the situation of an irie in an
oversized guide or, even in a standard guide, when
more discontinuitiee are placed close to each
other. The elements of the equivalent network, as

functions of bid, have been derived in cloee form.

Figure 5 displays the transmission coefficient

of two identical, symmetrical, infinitely thin

irisee spaced Agl% apart at one epot frequency for
a varying iris aperture. The experimental points

and curve a have been derived from [3]. Curve b

has been computed with the equivalent circuit of
Fig. 4. Introducing the effect of a small iris

thickness (curve c) improves the agreement still
further.

Conclusions

True wideband equivalent circuits of

capacitive irises and eteps have been derived from
a Rayleigh-Ritz variational solution. The

element values are functions of the geometry only.
These results can be used directly in a network

synthesis program.
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