NETWORK MODELLING OF INTERACTING CAPACITIVE IRISES

AND STEPS IN

WAVEGUIDE

T, E. Rozzi
Philips Research Laboratories

Eindhoven, The

Netherlands

Abstract

A unified approach is presented for modelling capacitive irises and steps in standard and oversize

guides.

The variational solution yields an accurate wideband equivalent network with explicit, geometry-
dependent element values. Design information is provided.

1. Introduction

Approximate monomode representations of
discontinuities are familiar to the microwave
engineer. ©No models at all, however, are available
for configurations where more than one mode is
propagating or still causes appreciable interaction.
Recently a new approach to the modelling of trans-
verse aperture-type discontinuities in a general
multimode situation has been developed.t This
approach is based upon the following physical
observations:

i. Only the first few modes excited by a discon-
tinuity "see" the successive discontinuity,
that is, all the propagating modes plus
possibly the first few nonpropagating ones.
These we shall call accessible modes.

ii. All the infinite remaining modes can be
considered as localized to the neighbourhood
of the discontinuity which excites them.

Accessible modes represent the truly distributed

part of the problem. Localized modes, instead,

being almost "lumped" in nature, are responsible
for the energy storage of the discontinuity. The
total effect of the localized modes on the
accessible ones can be represented by lossless,
reciprocal, quasilumped multiports (one pair of
accessible ports for each accessible mode). These
multiports can be represented by a Foster canonical
representation. The problem consists in extracting
poles and residues directly from a Rayleigh-Ritz
variational solution of the field problem.

The field problem of a cascade of
discontinuities then reduces to the network problem
of analyzing a cascade of lumped multiports
connected by a finite (and usually small) number of
transmission lines (see Fig. 1). The multiports
are described by means of their canonical Foster
form. The propagation constants of the trans-
mission lines, one for each accessible mode, are
known. Therefore, one can apply standard network
analysis to obtain the overall characteristics of
the cascade.

Inductive iris and step discontinuities under
arbitrary TE(LSM) excitation have been treated in
a recent paper.

The same technique is algo applicable to the
treatment of obstacle problems under TM(LSE)

excitation.

The present contribution treats the case of
TM(LSE) excitation of aperture-type discontinuities

197

or TE(LSM) excitation of obstacle-type
discontinuities. The capacitive iris and step
discontinuities are treated in detail.

2. Variational Solution

The basic geometry is illustrated in Fig. 2.
If b' = d, the step is recovered; if b' = b and
t = 0, the infinitely thin iris is obtained. The
k modes are accessible in guide g, k' modes in
guide g' (k + k' = k). Let us introduce the
transformation
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and the normalized susceptive part of the Green's
function, i.e., the contribution of the localized
modes only, reduces to the matrix
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The Rayleigh-Ritz variational expression of order
N for the reactance matrix of the iris, as seen by
the accessible modes, is
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where Q denotes the matrix formed with the first k
rows of P and k' rows of A and the infinite matrix
B has been replaced by its N x N truncation.
Qk+l,* = ET'Ql,* > Wwe need consider only

k -1-= k ports.

3. Frequency Dependence

Localized modes are "'quasilumped" in nature.
Therefore an effective positive real (p.r.)
approximation of the modal characteristic
admittance is obtained by means of a continued
fraction expansion of the square root in (4).

Successive truncations yield:
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Let us use in (3) the third-order approximation for
n < nyg (ng arbitrary) and the first-order
(quasistatic) approximation for n > ng. A similar
approximation is valid "a fortiori" in guide 2.

Setting k = N, (5) yields
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Introducing (6) in the above equation, we obtain a
canonical Foster representation of the iris
susceptance y as seen by k = N accessible modes
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If k < N the unwanted N - k ports are left open.

It appears from (3) that the case k > N is not
interesting.

In the case of a thick iris in a uniform
guide, it is possible to make use of longitudinal
symmetry, Canonical representations have been
derived in this case too.

4, Examples

Figure 3 depicts geometry, equivalent circuit
and element values versus b/d of the E-plane step
obtained by setting N = ng = my = k=1 1in (8).
The reflection coefficient is accurate within
2 percent over the band 1 < w < 2 over the whole
step range.

Figure 4 shows the equivalent network of an
infinitely thin iris with two_accessible modes.
This was obtained by setting N =k =n, = 2 and is
applicable to the situation of an iris in an
oversized guide or, even in a standard guide, when
more discontinuities are placed close to each
other. The elements of the equivalent network, as
functions of b/d, have been derived in close form.

Figure 5 displays the transmission coefficient
of two identical, symmetrical, infinitely thin
irises spaced Ag/8 apart at one spot frequency for
a varying iris aperture. The experimental points
and curve a have been derived from [3]. Curve b
has been computed with the equivalent circuit of
Fig. 4. Introducing the effect of a small iris
thickness (curve c) improves the agreement still
further.

Conclusions

True wideband equivalent circuits of
capacitive irises and steps have been derived from
a Rayleigh-Ritz variational solution. The
element values are functions of the geometry only.
These results can be used directly in a network
synthesis program.
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